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A generation process for the three-dimensional wave which dominates the transition 
preceded by a Tollmien-Schlichting (T-S) wave is studied both experimentally and 
numerically in plane Poiseuille flow at a subcritical Reynolds number of 5000. In 
order to identify the origin of the three-dimensional wave in Nishioka et al.’s 
laboratory experiment, the corresponding spanwise mean-flow distortion and two- 
dimensional T-S wave modes are introduced into a parabolic flow as the initial 
disturbance conditions for a numerical simulation of temporally growing type. 
Through reproducing the actual wave development into the peak-valley structure, 
the simulation pinpoints the origin to be the slight spanwise mean-flow distortion in 
the experimental basic flow. Furthermore, the simulation clearly shows that the 
growth of the three-dimensional wave requires the vortex stretching effect due to the 
streamwise vortices, which appear under the experimental conditions only when the 
amplitude of the two-dimensional T-S wave is above the observed threshold. 

1, Introduction 
Since a series of elaborate experiments on the ribbon-induced transition in Blasius 

flow by Klebanoff & Tidstrom (1959), Klebanoff, Tidstrom & Sargent (1962), 
Kovasznay, Komoda & Vasudeva (1962) and Hama & Nutant (1963), the three- 
dimensional wave development of an initially two-dimensional wave has been well- 
recognized. Indeed, the prerequisite for the eventual breakdown into turbulence is 
the occurrence and growth of three-dimensionality leading to a spanwise-periodic 
wave motion, i.e. the so-called peak-valley structure. It is, however, only recently 
that we have gradually obtained a better understanding of the mechanism for the 
three-dimensional wave development, as reviewed by Tani (1981), Morkovin (1983), 
Herbert (1984a), Craik (1985) and Stuart (1986). 

With respect to theoretical developments, Benney & Lin (1960) modelled the so- 
called longitudinal vortices associated with the peak-valley structure (that cause the 
local high-shear layers to form at spanwise peak positions as demonstrated by Stuart 
1965) through considering the second-order effects of the interaction between the 
primary two-dimensional Tollmien-Schlichting (T-S) wave and a pair of oblique 
waves (of the same streamwise wavenumber) with the spanwise periodicity : 
Klebanoff et al. (1962) supported this model of the formation of the longitudinal 
vortices. A more rational analysis of this kind of interaction was made by Stuart 
(1962) on the basis of weakly nonlinear theory. Craik (1971) proposed a resonant 
wave triad : a resonance between the fundamental two-dimensional wave and a pair 
of subharmonic oblique waves. Kachanov & Levchenko (1984) observed Craik’s 
mechanism to operate in experiments, depending on the disturbance environment. 
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Saric & Thomas (1984) visualized two types of subharmonic modes, each of which 
developed into a staggered peak-valley structure quite different from the Klebanoff- 
type ordered peak-valley : one was interpreted as a result of Craik’s mechanism and 
the other was explained by using Herbert’s secondary instability model (described 
below). 

In plane Poiseuille flow, continued experimental, theoretical and numerical efforts 
of many authors have also significantly contributed to  the progress in understanding 
the fundamental problem of the transition initially controlled by T-S waves. 
Nishioka, Iida & Ichikawa (1975), Nishioka, Iida & Kanbayashi (1978), Nishioka, 
Asai & Iida (1980, 1981), Nishioka & Asai (1984, 1985a, b )  have been studying the 
ribbon-induced transition a t  sub- and super-critical Reynolds numbers to  clarify the 
linear instability (1975), the nonlinear subcritical instability (put forward by Stuart 
1960) (1975, 1985a), the peak-valley development (1978, 1980, 1985b), the high- 
frequency instability (of the high-shear layer) into hairpin eddies (1980, 1981), and 
the final evolution into wall-turbulence (1981, 1984). Because the nature of three- 
dimensional wave growth is found to be almost independent of the Reynolds number 
R (defined on the channel half-depth h and the centreline velocity U,), the 
experiments have been done mainly a t  R = 5000 and a t  a ribbon frequency f = 72 Hz 
(Znfh/U, = 0.337). In  spite of the subcritical Reynolds number (R = 5000, 86% of 
the critical R for linear instability), it is shown that the excited wave can grow when 
the initial amplitude exceeds a threshold, about 0.01 U, in r.m.s. terms. As the wave 
grows, the initial slight spanwise distortion of the wave front is intensified to develop 
into the ordered peak-valley structure. I n  the beginning, the intensification proceeds 
near the critical layer only. No large distortion occurs near the centreline until the 
high-shear layer breaks down into hairpin eddies. The observed threshold behaviour 
of the initial wave growth is in reasonable agreement with the prediction from 
weakly nonlinear theory for two-dimensional T-S waves : for the two-dimensional 
threshold, see Itoh (1974), Herbert (1977) and Fasel & Bestek (1980), and for the 
threshold behaviour of oblique waves, see Dhanak (1983). Moreover, the observed 
amplification of the initial three-dimensionality clearly indicates that the almost 
streamwise-periodic flow near the subcritical equilibrium is highly sensitive to  three- 
dimensional disturbances. 

Therefore, on the basis of Stuart’s (1962) weakly nonlinear theory including three- 
dimensional disturbances, Itoh (1  980) studied three-dimensional effects and found 
similar threshold behaviour in plane Poiseuille flow, though the parameter range in 
his calculation was different from ours. Subsequently, Kleiser (1982) succeeded in 
reproducing our laboratory experiment (at least up to the stage of the formation of 
high-shear layer) through a numerical simulation of temporally growing type and 
demonstrated the threshold behaviour in the growth of the initially imposed small- 
amplitude three-dimensional wave disturbances (i.e. a pair of oblique Orr- 
Sommerfeld modes). Orszag & Patera (1983) also showed a similar three-dimensional 
development numerically. 

These experimental and numerical results encouraged Orszag & Patera (1983) and 
Herbert (1984a, b )  to model the three-dimensional wave growth as a linear secondary 
instability of the basic flow modified by a finite-amplitude T-S wave with respect to 
three-dimensional disturbances. Solving the eigenvalue problem for the case of our 
experiment, Herbert found two different three-dimensional modes, i.e. those with 
fundamental and subharmonic frequencies, and interpreted that they are re- 
spectively responsible for the ordered peak-valley observed by Nishioka et al. and 
the staggered peak-valley visualized by Kozlov & Ramazanov (1983). T o  clarify the 



Origin of the peak-valley wave structure 3 

instability, it is necessary to identify the structure of the instability wave. So, 
through a painstaking double Fourier analysis (of the u-velocity fluctuation) with 
respect to the frequency and the spanwise wavenumber, Nishioka & Asai (1985b) 
have tried to identify the three-dimensional modes actually dominating the ordered 
peak-valley development, and have shown that Herbert’s model well describes the 
actual three-dimensional wave motions. Singer, Reed & Ferziger (1986) used a 
‘random noise ’ as the initial three-dimensional disturbances to  make a numerical 
simulation not unlike Kleiser’s. The ‘random’ component in Singer et d ’ s  initial 
conditions was introduced by adding a small random number to each velocity 
component a t  every grid point. In  the simulation of temporally growing type, it is 
worth noting that according to  DiPrima & Habetler (1969)’ such initial disturbances 
may be decomposed into oblique Orr-Sommerfeld (and/or Squire) modes and 
are thus different from the actual random noise, including sound noise and free- 
stream turbulence. The results of their simulation show that both fundamental and 
subharmonic three-dimensional modes can develop depending on the magnitude of 
the two-dimensional T-S wave just as predicted by Herbert’s model. Singer et al. also 
observed that longitudinal vortices added to  the above-mentioned initial field can 
suppress the subharmonic mode, while accelerating the growth of the fundamental 
mode. 

In  spite of these experimental and numerical efforts, which definitely support 
Herbert’s secondary instability model, a crucial question is left open concerning the 
effect of mean-flow distortion on the generation of three-dimensional wave 
disturbances. The question is really important as i t  is related to  the origin of the 
three-dimensional waves dominating the transition under consideration. As will be 
briefly described in $2, our basic flow has an almost periodic spanwise variation (of 
the order of 2% in U, a t  most) which determines the spanwise positions of 
peak-valley structure, so that the flow condition is not the same as Herbert’s model 
which assumes no spanwise distortion in the basic flow. On the other hand, the 
residual turbulence is quite low, being less than 0.05 % of U, and mainly consisting 
of low-frequency components. These facts suggest a high possibility that the two- 
dimensional T S  wave interacts with the three-dimensional (spanwise periodic). 
steady distortion to generate three-dimensional wave disturbances, which then 
resonate with the two-dimensional wave and develop into three-dimensional wave 
modes not unlike the eigenmode predicted by Herbert’s model above the threshold. 
Herbert’s secondary instability model does not provide any information on the 
source (or origin) of the three-dimensional waves actually excited in a particular flow 
condition. Although Herbert & Morkovin (1980) and Itoh (1987) pointed out the 
importance of this kind of interaction, they could not make clear the occurrence and 
growth process of the three-dimensional wave modes observed. This is also the case 
in Singer et al. (1986, 1987) who used longitudinal vortices and oblique waves as a 
part of the initial conditions as mentioned earlier. So the present authors decided to 
examine and follow up the possible generation and growth of the three-dimensional 
wave modes from the interaction between the three-dimensional steady distortion 
and the two-dimensional T S  wave, through a numerical simulation. 

I n  our laboratory experiment, the slight spanwise periodic distortion in the basic 
flow is probably due to some inevitable non-uniformities of the damping screens (in 
particular, the farthest downstream one) and/or the wall curvature of the contraction 
section where Gortler-type vortices may appear. Whatever the causes are, there is 
little doubt that a t  subcritical Reynolds numbers the possible mean flow distortion 
a t  the channel inlet decays downstream, and nothing more happens if it  is initially 
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weak, without accompanying strong residual turbulence. Therefore, it may be 
expected that in the test section (beyond 600h from the channel inlet), the possible 
small remnant of the inlet flow distortion is expressed in terms of the eigenmodes (for 
spanwise mean-flow distortion) derived from the linear stability equations for the 
distortion of ideally two-dimensional parabolic flow. This will be clarified in $ 3 .  For 
the numerical simulation in $4, we shall select one of the three-dimensional 
eigenmodes which has no cross-stream velocity components and best approximates 
the actual spanwise periodic distortion in our experimental basic flow (at R = 5000). 

2. Initial three-dimensionality eventually dominating the transition 
Using a long rectangular wind tunnel of large aspect ratio (27.41, we have been 

studying the ribbon-induced transition in plane Poiseuille flow mainly at a subcritical 
Reynolds number R = 5000 (U,  = 9.8 m/s, h = 7.3 mm). Detailed experimental 
procedures are described in Nishioka & Asai (1985 6). Here we shall describe briefly 
the three-dimensional features of the initial wave development observed with a 
hot-wire a t  an x-station 48h downstream of the ribbon vibrating a t  

f = 72 Hz ( 2 ~ ~ f h / U ,  = 0.337). 

To illustrate the three-dimensionality of the basic flow, figure 1 shows the spanwise 
( z )  distributions of the local velocity U a t  various y-positions in the lower half of the 
channel at R = 5000; the y-axis (normal to wall) is measured from the channel centre. 
The figure compares three sets of data measured in different years to show that there 
are slight but non-negligible differences in the magnitude and detailed pattern of the 
three-dimensionality. No doubt, this is because the wind-tunnel conditions (for 
instance, inevitable dust accumulation on the damping screens in the settling 
chamber) were not exactly the same. Importantly, however, the global patterns are 
similar to each other (and well represented by solid lines as discussed later), so the 
reproducibility of the experiment has been maintained. The spanwise variations of 
local U are almost periodic with a dominant wavelength of about 25 mm (=  3.4h) 
near the centreline ; the three-dimensionality of the basic flow will be examined in 
detail in $3. As already noted in our previous papers (Nishioka et al. 1978, 1980; 
Nishioka & Asai 1985b), the excited wave is affected by the three-dimensionality in 
the basic flow, even when the excitation is weak and the wave amplitude is below the 
threshold for the onset of the peak-valley splitting. Figure 2(a )  illustrates this 
feature for a wave with uk (maximum r.m.8. amplitude) = 0.35 % of U,. Indeed, the 
three-dimensional plotting of the u-fluctuation indicates that the excited wave is not 
purely two-dimensional but exhibits a slight spanwise distortion ; time t runs 
backwards so as to provide a near-simulation of the wave coming out of the paper. 
The three-dimensionality is shown more quantitatively in figures 2(b)  and 2 ( c ) ,  
where the r.m.s. intensity of the u-fluctuation, u’, at y / h  = -0.815 and the phase of 
the fundamental frequency (72 Hz) component 8 a t  y / h  = -0.73 are respectively 
plotted against z. It may be seen that the spanwise phase distribution is almost 
periodic with a dominant wavelength (about 3.4h) imposed by the corresponding 
variation in the centreline velocity, though the three-dimensionality is quite small as 
seen in the amplitude distribution, and the wave is ascertained to be of two- 
dimensional T-S type (the wavelength A,, is 5.4h). As the amplitude of this primary 
wave is increased this initial three-dimensionality becomes amplified as shown in 
figure 3 (also presented in Nishioka & Asai 19856) and leads to  the peak-valley 
development, which is well-controlled in the sense that the peak-valley positions are 
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FIQURE 1. Spanwise distortion of the basic flow at R = 5000 : A, Nishioka et al. (1978) ; 0, Nishioka 
& Asai (19853); 0, present. Solid lines represent equation (9): y / h  (from top) = 0, -0.39, -0.41, 
-0.59, -0.60, -0.70, -0.73, -0.80, -0.86, -0.90. 

fixed and the total wave system is periodic in time : u; (shown as 1.8 % and 3.0 % in 
the figure) denotes the y-maximum of the r.m.s. value u' a t  a spanwise peak position, 
z = 7.5 cm. Here it is worth noting that in both halves of the channel (y 3 0) ,  the 
spanwise peaks appear a t  the same z-positions, i.e. at the z-positions where U, takes 
local maxima. 

Figure 4 also shows the three-dimensionality of the wave motion at various stages 
by plotting the z-distributions of u' a t  y/h = -0.815. The detail of the observed 
peak-valley wave development depends on the three-dimensionality in the basic 
flow, as demonstrated by two sets of data which were obtained in Nishioka & Asai 
(1985b) and the present study. It is interesting to note that in spite of rather clear 
difference in the degree of the three-dimensionality in the basic flow (as seen in figure 
l),  we see almost no difference in the two sets of data for u' in figure 4, except that 
the spanwise distributions are more periodic in the present experiment, just like the 
corresponding basic flow. This means that even the slightest three-dimensionality of 
the present basic flow has decisive effects on the peak-valley wave development. 

The well-controlled, periodic feature enables us to decompose the fluctuation field 
into two- and three-dimensional wave components by means of a double Fourier 
analysis with respect to the frequency and the spanwise wavenumber. Indeed, 
Nishioka & Asai (19853) have performed the analyses for the u-fluctuation field a t  
the uh/U, = 1.8% and 5.5% stages, where the peak-valley wave motion is fully 
established, and have observed that the two-dimensional wave is exactly the T-S 
mode and the three-dimensional wave thus singled out is well represented by the 
three-dimensional eigenmode of Herbert's model. But Nishioka & Asai (19853) have 
not performed the analyses below and around the threshold. So, as the first step of 
the present study, we have done a double Fourier decomposition for the smaller- 
amplitudes cases in order to clarify the threshold behaviour of the three-dimensional 
mode. The three-dimensional wave mode (of fundamental frequency f and dominant 
spanwise wavenumber /3* = 27c/3.4h), which as shown in Nishioka & Asai (19853) 
consists of a pair of right- and left-moving oblique waves of almost equal amplitude, 
is written as follows at a fixed x-position : 

= 2i3D(Y) cos (27cft+B3D(Y)) 'OS (B*(z-zp)), (1) 
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FIQURE 2. Initial three-dimensionality of the excited wave (72 Hz) at R = 5000. (a) Three- 
dimensional plot of the u-fluctuation a t  y l h  = -0.8; ( b )  r.m.s. amplitude u'/Uc at  y l h  = -0.815; 
(c) phase 8 at y l h  = -0.73. 

FIGURE 3. Three-dimensional wave growth leading to peak-valley structure, illustrated by means 
of the u-fluctuation at  y l h  = -0.815. (a )  u;/U, = 1.8%; ( 6 )  u;/U, = 3.0%. 
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where zp denotes the spanwise peak. We shall use this equation to define the 
amplitude Zi,, and the phase B,, for the three-dimensional wave mode. The 
y-maximum of Zi,, is denoted as A,,,,, and similarly the y-maximum of the two- 
dimensional T-S wave as A,,,, for the following discussion. 

To examine the relationship between the two-dimensional T-S wave and the three- 
dimensional wave mode (of dominant spanwise wavelength 3.4h), figure 5 (a) plots 
A,,,, versus Aemax : the measurements are made a t  a fixed 2-station (4% downstream 
from the ribbon) by varying the ribbon amplitude, and double Fourier analyses are 
carried out on the data to obtain A,,, and A,,,,. From the figure we see that when 
the amplitude of the two-dimensional T-S mode A,,,, is less than 1.0 YO of U,, the 
amplitude of the three-dimensional mode A,,,, is linearly proportional to A,,,,. 
However, as A$,+,, is increased beyond that level by increasing the ribbon amplitude, 
the ratio A3max/A2max ceases to  remain constant and starts to  grow. The growth of 
ABmax (relative to A,,,,) becomes pronounced beyond A,,,,/U, = 1.4 % (or 1 YO in 
terms of the r.m.8. value), which is the value often cited as the threshold for the 
peak-valley splitting following Nishioka et al. (1978, 1980). Figure 5 ( b )  shows the 
phase difference between the two-dimensional T-S and three-dimensional modes 
(8,,-8,,,) a t  y / h  = -0.815. In  the case of weak excitation where A3max/A2max 
remains constant, the phase difference also remains almost constant. However, it  
starts to change a t  about A,,,,/U, = 1.0% and approaches another constant 
(represented by a broken line) as A2,,,,,/Uc exceeds about 1.4%. The broken line is 
from the prediction of Herbert's secondary instability model (for the case of the 
subcritical two-dimensional equilibrium a t  R = 5000 and 2nh/A,, = 1.12, i.e. 
A,,,,/U, = 3.0%). It should be also noted that the phase difference between the 
two-dimensional mode and the ribbon current signal remains constant a t  each 
y-position over the whole range of excitation shown here. These results suggest that 
only the three-dimensional wave changes its structure and behaviour at and around 
Azmrx/U, = 1 YO. It has already been shown by Nishioka & Asai (1985b) that the 
three-dimensional mode a t  uL/U,  = 1.8% (A,,,,/U, = 2.0%) has almost the same 
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FIGURE 5. Threshold behaviour of the three-dimensional wave mode. (a) ABmax us. APmax; ( b )  
O,,-O,, ws. Atmax. The broken line in (b) is from the prediction of Herbert's secondary instability 
model. 

structure as that of the eigenmode of the secondary instability model: the three- 
dimensional wave mode for the case of weak excitation (i.e. A,,,,/U, < 1.0 %) will 
be described later. 

3. Theoretical considerations of the three-dimensionality of the 
experimental basic flow 

From the experimental results described thus far, we have learned that in its 
structure and behaviour the three-dimensional wave under consideration is highly 
dependent on both the two-dimensional T-$ wave and the initial three-dim- 
ensionality in the basic flow. This means that it is quite important to identify the 
three-dimensionality in our basic flow in as much detail as possible. Because the 
three-dimensionality is less than 2.5 YO of U, in magnitude, it is highly probable that 
such a small distortion can be described by linear stability theory. For simplicity, we 
consider the temporally growing case, where the distortion mode vo(y, z, t) = (uo, v,, 
zoo) takes the form 

&,(?A cos (P., 
u, = &(y) cos (Pz )  ert, (2) 0 G,(Y) sin ( P Z )  

and (G0(y), Go(y), CO(y)) is calculated from the following linearized equations written 
in non-dimensional form (scaled with the channel half-depth h and centreline 
velocity U,) 
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dU 
= R-& 

dY 

dv", 
-++Pz;, = 0, 
dy 

14) 

(6) 
" A  u ~ = v o = & o = O  at  y = + i .  

Among the solutions of the above equations, the simplest are the following 
streamwise modes without cross-stream velocities, obtained as the homogeneous 
solutions of (4) : 

(GO,OO,&,)  = (cos(m+~)ny,O,O), (7) 

with the eigenvalue y = {p2+ (m+!J2n2}/R, or 

(do,  O,, &,) = (sin (m+ 1) ny, 0,O) (8) 

with y = {p2+ (m+ 1)2n2}/R, where m = 0, 1, 2, ... . Using those streamwise modes, 
we made several attempts to represent the three-dimensional distortion of the 
experimental basic flow. The results show that the following combination of the 
lowest (m = 0) symmetric (us) and antisymmetricfu,) modes expresses the observed 

(9) 
three-dimensionality well : 

(10) 

(11) 

where the spanwise wavelengths 2nh/pS and 2nh//3, are respectively 23 mm and 
30 mm, with z,h = 50 mm and z,h = 55 mm. Equation (9) is compared with the 
experimental basic flow in figure 1. 

From (3)-(6), we can calculate the possible distortion modes which have all three 
velocity and vorticity components. Among those with streamwise vortices, particular 
attention is focused on two solutions. One is the least damped mode, which has a 
single streamwise vortex across the depth of the channel. The other is the next least 
damped mode with a double streamwise vortex across the depth. The dotted lines in 
figure 6(a,  b )  show the velocity field of the double-vortex mode, while the broken 
lines in figure 6(c,d) illustrate that of the single-vortex mode. The solid lines in 
figure 6(a, c) represent the symmetric (m = 0 and 1) and antisymmetric (m = 0) 
streamwise modes without cross-stream velocity. As far as the Go( y)-distribution is 
concerned, the single-vortex mode is indistinguishable from the antisymmetric 
streamwise mode m = 0 (i.e. u,). Such a close similarity is also seen between the 
double-vortex mode and the symmetric streamwise mode of m = 1. In this 
connection, the lowest symmetric streamwise mode (i.e. us) is exceptional in that it 
has no such a relation with streamwise vortices. 

Let us reconsider the distortion in the present experimental basic flow whose u- 
velocity is well represented by (9). It can be safely said that the part of the distortion 
whose i;,(y) is represented by us has no streamwise vortices at all. However, no such 
assertion is possible for the distortion represented by u, because of the possibility 
that  it might be of the single-vortex mode whose G,(y) is indistinguishable from u, 
as noted above. Importantly, however, the streamwise vortices of the single-vortex 
mode are extremely weak, and even if they exist in our basic flow at  R = 5000, they 
are almost negligible since vo and w, are three orders of magnitude smaller than uo, 
as can be seen from figure 6(c, d ) .  

The following experimental fact gives further insight into the relative importance 

u=  1-y2+u,+ua, 

U, = 0.015 cos ($y) COS/~,(Z-Z,), 

u, = 0.01 sin (ny) C O S / ~ ~ ( Z - Z , ) ,  
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FIQURE 6. Structures of the three-dimensional mean-flow distortion modes at R = 5000. Dotted 
lines in ( a )  and ( b )  are the double-vortex mode (p = 2.0); broken lines in ( c )  and ( d )  are the single- 
vortex mode (p = 1.5). Solid lines in (a )  and (c )  represent distortion modes without cross-stream 
velocities (equation (7) with m = 0, 1 and (8) with m = 0 respectively). 

of these two modes (us and ua) in determining the observed peak-valley structure: 
the peak states in both halves (y 3 0) of the channel always occur at the same 
z-positions and the spanwise wavelength of the wave motion is determined by 
the three-dimensional pattern of the centreline velocity. These suggest that the 
symmetric us mode (equation (10)) has a decisive effect on our peak-valley 
development. This is quite important considering the fact that the us mode (which 
is the least damped among all the distortion modes for given R and p) has no 
streamwise vorticity. 

Through numerical simulations, we shall further investigate the important role of 
the mean-flow distortion which is directly related to  the origin of the three- 
dimensional wave, and clarify the detailed process leading to the peak-valley 
structure. 
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4. Numerical study 
4.1. Formulation of the problem 

We use the incompressible Navier-Stokes equations written in non-dimensional form 
(scaled with the channel half-depth h and the centreline velocity U, of the basic 

(12) 

parabolic flow), 

v-u = 0, (13) 

1 
at R 
a u  
-+(u.V)u = -vp+-V", 

where u(z, y , z , t )  = (u,w,w) is the velocity field, p ( z ,  y , x , t )  the pressure and R the 
Reynolds number. We assume that the flow develops in time and is periodic in the 
streamwise (z) and spanwise (2) directions with the dominant wavelengths of 2n/a 
and 2 x / p  respectively, though actually the disturbances evolve in space. The 
boundary conditions are then written as 

u = O  at y = & l ,  (14) 

(15) u(z+2n/a, y ,  z+2n/p, t )  = u(2,  y ,  z,  t ) .  

As noted in the introduction, the initial disturbances to be superposed on the basic 
parabolic flow are given as a linear combination of a two-dimensional T-S mode and 
a three-dimensional (mean-flow) distortion mode, i.e. 

u(z, y, 2, t = 0) = V ( y )  + A ,  u&, y, t = 0) +A3 u3(y, 2,  t = 0) (16) 

u= (l-y,,O,O), (17) 

(18) 

with 

u, = Re {6,(y) ei(az-wt)}, 

where 6, and 6: are the eigensolutions of the linear stability equations. They are 
normalized respectively such that the maximum amplitude of the streamwise 
component is unity, so that A ,  and A,  define the initial amplitudes of the two- 
dimensional T-S and three-dimensional distortion modes respectively. To simulate 
our laboratory experiment closely, the Reynolds number R is set a t  5000, and the 
streamwise and spanwise wavenumbers, a and /3 are selected to be 1.12 and 2.0 
respectively : the corresponding eigenvalue w (  = or + iw,) of the two-dimensional T S  
wave is 0.315M.002 79i. 

As already discussed in $3, the three-dimensionality in our basic flow can be well 
represented by the two distortion modes, us (/3 = 2.0) and u, (p = 1.5) and the 
experimental evidence further suggests that the symmetric us mode is more 
important for the observed peak-valley development. So, we select the us mode 
(p = 2.0) for the initial mean-flow in the present simulation, 

(20) 

The initial mean-flow field is illustrated in figure 7 by comparing it to the 
approximated experimental basic flow containing the two distortion modes (equation 
(9) shown in figure 1). 

The development of disturbances in time is examined numerically under a 
constant (mean, streamwise) pressure gradient, - 2/R, using the Fourier-Chebyshev 

(@, s;, 2;:) = (cos ( tny ) ,  0,O). 
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FIGURE 7. Initid mean-flow field: --, U+u,; ....... U+u,+u, (equation (9)): y (from top) = 0, 
-0.2, -0.3, -0.4, -0.5, -0.6, -0.7, -0.8, -0.9. 

spectral method with a semi-implicit fractional step procedure in time advancement 
(Orszag & Kells 1980). The velocity is written as follows: 

where 

} for n =+ 0, (23) 

um0 = Re{6m,o(y,t)eim"Z}. (24) 

- Re(8 'Jmn - m . n  Y ( , t )  ei(maz+nflz)+ 6m,-n(y, t )  ,i (maz- npz)  

We take four Fourier modes in the z- as well as the z-directions (M = N = 3) and 41 
Chebyshev polynomials in the y-direction. As far as the initial stage of the three- 
dimensional development of interest here is concerned, the resolution (4 x 4 x 41 
modes) is sufficient to describe the phenomenon, as shown in the following sections. 
This is also supported by Kleiser's (1982) numerical solution with 8 x 8 x 41 modes. 
The computation is carried out by using a micro-computer (NEC 9801). 

4.2. Numerical results 
We first describe the results of the simulation for the low-amplitude case of the initial 
two-dimensional T-S and three-dimensional distortion modes, i.e. A ,  = 0.6 % and A ,  
= 0.5%. Figure 8 illustrates the development of the Fourier modes, ul0, uol and u,,, 
tracing the time evolution of their energies (scaled with that of the basic parabolic 

Both the two- and three-dimensional primary modes (Elo and Eol) indicate an 
exponential decay with almost the same damping rates as those given by linear 
stability theory (dotted and broken lines respectively). We have furthermore 
confirmed that they maintain their initial structures and do not change over time. 
The three-dimensional wave mode of interest here, u,,, which is generated by the 
coupling between the primary modes (ulo and u O l ) ,  is extremely weak and also decays 
exponentially as exp (wi + y )  t after passing the transient period, i.e. for t > 70. 
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FIQURE 8. Time evolution of Em, with initial conditions A ,  = 0.6% and A ,  = 0.5%. ......, 
exp(2w,t); ----, exp(2yt); ---, exp(2(wi+y)t). 

Maintaining A ,  a t  0.6%, we increased the magnitude of the initial three- 
dimensional distortion mode (A,) to 5 %  to see the dependency of the disturbance 
development on the magnitude of the initial three-dimensionality contained in the 
basic flow, but we could not find any noticeable change in the structure and 
behaviour of the two- and three-dimensional modes except that ull increases in 
proportion to A ,  ; namely, when the two-dimensional T-S wave is weak, the three- 
dimensional wave u,, is simply generated by the second-order coupling between ul0 
and uol and nothing more interesting occurs, a t  least in the range of A ,  examined. To 
more fully examine the structure of u,, thus generated for the case of the weak two- 
dimensional T-S wave, we also solved linear aon-homogeneous equations for u,, 
taking into account only the nonlinear coupling between the primary u,, and u,, 
modes. The result will be described in $4.3. 

On the other hand, the intensity of the two-dimensional T-S mode has a crucial 
effect on the development of the three-dimensional wave mode. Figure 9 compares 
different features of the development of the three-dimensional mode u,, for various 
magnitudes of the initial two-dimensional mode A ,  (from 0.6 to 3.0%) with a fixed 
A ,  of 0.5 %, by plotting its energy scaled with the magnitude of the primary modes, 
i.e. El l ( t ) / (A ,  A,),.  I n  each case, there is little doubt that the three-dimensional wave 
mode is generated first in the same way as in the low-amplitude case (A2  = 0.6%). 
However, for A ,  beyond 1 % ,  the final evolution deviates from the second-order 
behaviour (characterized as exp (wi + y )  t ) ,  that is, the three-dimensional wave mode 
starts to  grow. This suggests that  'additional interactions' come to play beyond the 
threshold for A,, as explained below. If the nonlinear effects are merely governed by 
the second-order coupling between the primary modes (ul0 and u,,) as is the case 
below the threshold, the streamwise and spanwise stretching of vorticity cannot 
operate because of the absence of the streamwise vorticity, and then the three- 
dimensional wave is generated mainly by the tilting of the spanwise vorticity. In  this 
regard, we are interested in the change in the structure of the three-dimensional 
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FIGURE 9. Energy of the three-dimensional mode E l ,  218. time for various initial amplitudes A, 
from O.~'%O to 3.0%, with a fixed value of A, of 0.5%. 

distortion mode (uo l )  for the growth cases A ,  = 2.0,2.4 and 3.0 YO. Figure 10 compares 
the y-distributions of the three components of u,, observed at t = 90 for A ,  = 0.6,2.0, 
2.4 and 3.0 %. We notice that the three-dimensional distortion mode (uol) changes its 
structure a t  and around the critical layer, and more importantly the cross-stream 
velocity components (and therefore the streamwise vorticity develops as the 
magnitude of the two-dimensional T S  mode (A,) increases. The new generation of 
the streamwise vorticity (or vortex) may cause the three-dimensional wave mode to 
grow through the effects of vortex stretching as well as tilting which together with 
the convection effect work on the main spanwise vorticity and are definitely 
responsible for the three-dimensional growth as Orszag & Patera (1983) point out. 
Therefore the 'additional interactions ' should be such that they can generate u,, with 
the cross-stream velocity components, i.e. the streamwise vortices : the most 
important among the possible 'additional interactions ' is no doubt that between the 
two-dimensional T-S mode (u,,) and the newly generated ull. 

In  such growth cases the three-dimensional wave mode develops almost 
exponentially as if it were caused by a certain linear instability. This is probably 
because the magnitude of u,, is maintained nearly constant over time. Here, the 
largest value of the initial two-dimensional amplitude (A ,  = 3.0%) is almost equal 
to the two-dimensional equilibrium amplitude calculated by Herbert ( 1977), so 
comparison of the disturbance development in this case to the secondary instability 
model is of interest. Figure 11 traces the evolution of the two-dimensional T-S mode 
and various three-dimensional modes of the same spanwise wavenumber p, in terms 
of El,  and Em, (m = 0, 1,  2). The result indicates that the three-dimensional modes 
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FIGURE 10. y-distributions of uol, zlol and wol at t = 90, for the initial value A ,  = 0.6% (-), 
2.0% (......), 2.4% (----) and 3.0% (---); A ,  is fixed at 0.5%. Note that the distributions 
of vOl (antisymmetric in y) and wol (symmetric in y) are respectively given in the positive- and 
negative- y region only. 

I 

FIGURE 11. Time evolution of Em, with initial conditions A ,  = 3.0% and A ,  = 0.5%. The 
broken line indicates the growth rate from Herbert's model (1984b). 
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all grow almost exponentially with the same exponent (for the three-dimensional 
distortion mode E,,, this is the case for t > 80), while the two-dimensional mode 
maintains an equilibrium state for the whole calculation time. It is also noted that 
the three-dimensional modes of spanwise wavenumber 2p (such as vo2 and v,,) are 
weak compared with the vll mode up to the stage shown here, though they are 
growing with an exponent twice that of the v,, mode. Herbert (1984a, b )  interpreted 
this feature to mean that the streamwise periodic flow caused by the two-dimensional 
T-S wave of the equilibrium (or near-equilibrium) amplitude is unstable with respect 
to three-dimensional disturbances. Applying the Floquet theory to the linearized 
equations for three-dimensional disturbances, he obtained a three-dimensional 

= ,at 2 einpz 6 (y)eima(z-ct) 

where (i is the growth rate which he calculated to be 0.0509 for the case of the same 
flow parameters (R, a, p and A,)  as the present. His growth curve, represented by the 
broken line in the figure, shows good agreement with the present simulation. Thus we 
expect that the structural change in the three-dimensional mean-flow distortion 
mode (and the occurrence of streamwise vortices) can be interpreted by using 
Herbert’s secondary instability model. So figure 12 compares the y-distributions of 
the uol, wol and wol components for the case A ,  = 3.0% (at t = 90) with the 
corresponding ones of Herbert’s model where, for uol, the initial three-dimensional 
distortion mode is superposed on the eigenmode. The magnitude of the eigenmode is 
chosen so that the maximum amplitude of ull (streamwise velocity component of the 
three-dimensional wave) coincides with that of the simulation. We find a close 
similarity between the structures of the present calculation and Herbert’s model. 
Furthermore, we have examined the behaviour of various three-dimensional modes 
in the other two cases of lower amplitudes A ,  = 2.0 and 2.4%, and found that the 
second-harmonic three-dimensional wave mode ( v,,) and the cross-stream com- 
ponents of the mean-flow distortion (wol and wol) also develop with almost the same 
exponent as that  of the v,, mode, though the exponent is of course smaller than that 
for the case A ,  = 3.0% as seen in figure 9. 

As for the initial three-dimensional disturbances, the present numerical simulation 
demonstrates that the mean-flow distortion alone can cause the subcritical three- 
dimensional instability leading to the peak-valley structure, provided that A ,  is 
above the threshold. In  this case, as we have seen in figure 10, the change in the 
structure of the mean-flow three-dimensionality occurs only near the walls as if the 
newly generated three-dimensional distortion mode were superposed on the initial 
mean-flow distortion. That is, once the initial three-dimensionality generates the 
three-dimensional wave disturbance through the interaction with the two- 
dimensional T-S wave, the additional interactions between the two- and three- 
dimensional wave modes operate to  generate streamwise vorticity, and the resulting 
efficient three-dimensional growth seems to  be well described by Herbert’s model. 

4.3. Comparisons with the experiment 

Let us compare the present numerical results with our laboratory experiments, which 
are the only experiments available for comparison. We should first examine whether 
the observed three-dimensionality of the wave really originates from the interaction 
between the two-dimensional T-S wave and the three-dimensional distortion mode, 
as demonstrated by the simulation. Figure 13 compares the actual y-distributions of 
amplitude and phase of ull (the dominant three-dimensional mode) in the case of 

eigenmode of the form +m 

1 (26) mn 
n-kl m--m 
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FIGURE 12. Comparison for the three-dimensional distortion mode uol between the present 
simulation and Herbert’s secondary instability model: -, simulation (A,  = 3.0%, t = 90); ......, 
Herbert’s eigenmode ; , Herbert’s eigenmode plus the present initial three-dimensional 
distortion mode (cos ( in~),  0, 0). 

weak excitation (given in figure 2) with the corresponding results of the simulation 
(solid lines) and also with those calculated (as mentioned earlier) from the disturbance 
equations for ull taking into account only the coupling between the primary ul0 and 
u,, modes (broken lines). In  figure 13 ( b ) ,  the phase distribution of the two-dimensional 
T-S mode (alo) is added to see the relative phase between the two-dimensional T-S 
and three-dimensional modes. As a matter of course, the three-dimensional wave 
mode (q1) resulting from the interaction between the primary two- and three- 
dimensional modes (ul0 and oOl) is locked in phase to the two-dimensional T-S wave 
( ulo). These comparisons show that the experimentally observed structure of the 
three-dimensional component is almost the same as that of the simulation and of the 
calculation taking into account only the second-order coupling between the primary 
two-dimensional T-S wave and the three-dimensional distortion mode. This is also 
the case for the phase relationship with the two-dimensional T-S wave. Furthermore, 
measurements have already indicated that the three-dimensional wave maintains a 
linear relationship, in magnitude, with the two-dimensional T-S wave when the 
latter is weak (less than about 1 YO of U,) ; see figure 5. All these features no doubt 
result from the second-order coupling as already concluded from the results of the 
simulation. The reason why we have thus far been so careful in concluding this 
feature must be explained, namely, there is a possibility that the ribbon vibrating 
in the three-dimensional basic flow may directly generate three-dimensional wave 
disturbances together with the two-dimensional T-S wave. Even if it is the case, the 
directly ribbon-induced three-dimensional wave may decay downstream according 
to linear stability theory, with a large damping rate because the Reynolds number 
is subcritical. Therefore, even if existed, it would be extremely weak a t  the 
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FIGURE 13. Comparisons of (a) amplitude and ( b )  phase distributions of the three-dimensional wave 
mode ull (antisymmetric in y) between experiment a t  u;/U, = 0.35% (O), the simulation with 
initial conditions A ,  = 0.6% and A ,  = 0.5%, t = 90 (---), and calculation taking into account 
only second-order coupling between primary ul0 and uol (----). The phase of the two-dimensional 
wave mode ul0 (antisymmetric in y) is also plotted: 0,  experiment; , simulation and 
distribution of two-dimensional T-S mode. 

observation position (48h downstream of the ribbon) unless the intensity were 
extremely large a t  the ribbon. This inference is firmly supported by the comparisons 
in figure 13. So we can say that the observed three-dimensional wave component 
mainly results from the two and three-dimensional interaction of interest here when 
the amplitude of the primary T-S wave introduced is not particularly large. 

As the magnitude of the primary T-S wave is increased beyond the threshold of 
about A ,  = 1.4 YO, the three-dimensional wave component in both the laboratory and 
numerical experiments begins to grow, leading to the peak-valley wave motion. 
Figure 14 plots the maximum r.m.s. amplitude of u-fluctuations a t  z = 0, n / 2 p  and 
n/p versus time for the three cases A ,  = 2.0, 2.4 and 3.0% : The centreline velocity 
(U,) takes tt local maximum and a local minimum a t  z = 0 and n/p respectively. As 
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FIGURE 14. Development of u-fluctuation a t  z = 0 (-), n/SP (---) and RIP (----) for the three 
cases A ,  = 2.0,2.4 and 3.0 % with a fixed A ,  of 0.5 YO. Note that the centreline velocity in the initial 
flow field takes a local maximum a t  z = 0 and a local minimum a t  z = n/P; see figure 7. 

seen in the figure, the spanwise peak where the wave amplitude is enhanced develops 
a t  the z-position of local U, maximum ( z  = 0) with the valley a t  the local U, 
minimum ( z  = n/p), in complete agreement with our laboratory experiment, namely, 
the peak-valley situation is completely determined by the spanwise distortion of the 
basic flow. Here it should be noted that we observe two-dimensional wave behaviour 
a t  the spanwise mid-position ( z  = n/2p)  since the three-dimensional mode of higher 
spanwise wavenumbers (e.g. the u,, mode) is negligible in magnitude. 

Another important aspect is the structure of the growing three-dimensional wave 
mode. So, figure 15 compares the y-distributions of the amplitude and phase of uI1 
(at t = 90 for the cases A ,  = 2.4 % and 3 %) with those of the laboratory experiment 
(at the u;/U, = 1.8% stage). In figure 15(b), the phase distribution of the two- 
dimensional T S  mode (ul& is also plotted in the same way as in figure 13 (b) .  It was 
found that in these growth cases too, the three-dimensional wave is locked in phase 
with the two-dimensional wave. As has already been shown in Nishioka & Asai 
(1985b), figure 15 confirms that the structure of the eigenmode of the secondary 
instability model is very close to that of the growing three-dimensional mode in the 
experiment. Nevertheless, we should point out a slight but non-negligible difference 
between Herbert’s eigenmode and the simulated three-dimensional mode which 
agrees more closely with the actual three-dimensional wave mode as far as the phase 
distribution is concerned. This also suggests that the initial three-dimensional 
disturbance of the present study, i.e. the spanwise distortion of the basic flow 
(symmetric mode, (10)) really dominates the observed three-dimensional wave 
development. 

In  $3, we saw that our experimental basic flow also contains the antisymmetric 
distortion mode (equation (11)).  Although the above results suggest that the 
antisymmetric mode has no significant effect on the observed three-dimensional 
wave development, we have to be very careful to conclude this : our experiment will 
be reproduced more accurately through similar computations which include the 
antisymmetric distortion mode as the initial condition. The content of the weak 
antisymmetric distortion mode will distort the y-symmetry of the peak-valley 
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FIQURE 15. Comparisons of (a) amplitude and (6) phase distributions of the growing three- 
dimensional wave mode uI1 between experiment, numerical simulation and Herbert's secondary 
instability model. 0, experiment (uk/Uc = 1.8%) ---, simulation (t = 90) for A ,  = 2.4% and 
A,  = 0.5%; . . * . * * ,  simulation (t = 90) for A ,  = 3.0% and A ,  = 0.5%; - , Herbert's model. For 
the phase of the two-dimensional mode, all the corresponding results are shown, as can be seen 
from the experimental points indicated by 0 .  

structure slightly because it may excite a symmetric three-dimensional wave 
through the interaction with the (antisymmetric) two-dimensional T-S wave. 
Without carrying out such detailed calculations, however, it can be concluded from 
the present study that through interacting with the two-dimensional T-S wave, the 
mean-flow distortion can excite the three-dimensional wave leading to the 
peak-valley development. 

5. Concluding remarks 
In  this paper, we have examined numerically the three-dimensional evolution of 

the T-S wave in a slightly three-dimensional plane Poiseuille flow at a subcritical 
Reynolds number R = 5000 in detail to understand the process leading to the 
peak-valley structure observed in our laboratory experiment. 
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The most important result obtained is that the spanwise distortion of the basic 
flow causes the peak-valley wave motion to develop through the interaction with the 
two-dimensional T S  wave when the amplitude of the T-S wave exceeds about 1 %, 
as observed in our laboratory experiments. When the two-dimensional T-S wave is 
weak, the three-dimensional wave disturbance is generated simply through the weak 
interaction (the second-order coupling) between the two-dimensional T-S wave and 
the three-dimensional distortion mode (initially contained in the basic flow), and 
decays owing to viscous effects as does the two-dimensional T-S wave under the 
subcritical condition. On the other hand, above the threshold, the disturbance 
development has the nature of a secondary instability, accompanying the 
simultaneous growth of longitudinal vortices. In this case, the peak-valley positions 
are determined by the three-dimensionality of the basic flow just as in our laboratory 
experiment. Comparisons of the structure of the three-dimensional wave mode 
between the present simulation and our laboratory experiment clearly show that the 
three-dimensional evolution numerically observed here really occurs in our plane 
Poiseuille flow containing slight three-dimensionality in the basic flow. 

Nishioka et al. (1975) first showed experimentally the occurrence of the subcritical 
instability in plane Poiseuille flow and obtained qualitative agreement, on the 
threshold behaviour, between observations and Itoh’s (1974) calculation based on 
the two-dimensional weakly nonlinear theory of Stuart (1960). On the basis of the 
present numerical study, there is no doubt that  in Nishioka et aZ.’s (1975) experiment 
too, the three-dimensional wave mode was generated, growing when the amplitude 
of the two-dimensional wave was above the three-dimensional threshold. However, 
the three-dimensionality of the basic flow (at R = 5000) in the 1975 experiment was 
much weaker than those shown in figure 1, namely the three-dimensional disturbance 
source was considerably weaker. Furthermore, according to the present study, the 
z-position where the measurement was taken is judged to be near the mid-position 
between the spanwise peak and valley because it was located between those of local 
U, maximum and minimum. At exactly the mid-position, we observe the behaviour 
of the two-dimensional wave only. So it appears quite natural that their experimental 
results demonstrated almost the same behaviour as predicted by weakly nonlinear 
stability theory for the two-dimensional wave, so long as the three-dimensional wave 
mode remained weak even though it was growing. 

Finally, from the present study, it can be concluded that the process leading to the 
peak-valley structure initially caused by the spanwise distortion in the basic flow can 
occur in Blasius flow too, just as in plane Poiseuille flow. Indeed, in Klebanoff et aZ.’s 
(1959, 1962) experiment too, the weak spanwise distortion of the basic flow is no 
doubt responsible for the peak-valley wave growth. 

The authors wish to express their sincere gratitude to Professors S. Iida, I. Tani 
and H. Sat0 for their continual encouragement and to Mr K. Suzuki for his 
enthusiastic help in carrying out the experiment and the data analyses. 
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